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Abstract
When a local potential changes abruptly in time, an electron gas responds by shifting to a new
state which at long times is orthogonal to the one in the absence of the local potential. This is
known as Anderson’s orthogonality catastrophe and it is relevant for the so-called x-ray edge or
Fermi-edge singularity, and for tunneling into an interacting one-dimensional system of
fermions. It often happens that the finite frequency response of the photon absorption or the
tunneling density of states exhibits a singular behavior as a function of frequency:
( ωth
ω−ωth

)α�(ω− ωth), where ωth is a threshold frequency and α is an exponent characterizing the
singular response. In this review singular responses of spin-incoherent Luttinger liquids are
reviewed. Such responses most often do not fall into the familiar form above, but instead
typically exhibit logarithmic corrections and display a much higher universality in terms of the
microscopic interactions in the theory. Specific predictions are made, the current experimental
situation is summarized and key outstanding theoretical issues related to spin-incoherent
Luttinger liquids are highlighted.
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1. Introduction

Until a few years ago there was a common feeling in the
condensed matter physics community that we had a very good

understanding of the universal properties of one-dimensional
systems of fermions through our knowledge of Luttinger liquid
theory and its instabilities (Giamarchi 2004, Gogolin et al
1998). One of the key results of Luttinger liquid theory
(Haldane 1981) is that interacting electrons in one dimension
have separate dynamics in the spin and charge sectors at
low energies. These low energy collective spin and charge
modes are bosonic and generally propagate with different
velocities, with the spin mode typically being the slower of the
two. Luttinger liquid theory provides a particularly convenient
theoretical framework for discussing the response of the
electron gas to a time-dependent local potential, even in higher
dimensions: the mathematical trick of ‘bosonization’ makes
the evaluation of correlation functions relatively simple, and a
potential local on the scale of the Fermi wavelength results in
scattering of primarily s-wave type which effectively converts
the problem to just one dimension (the radial coordinate).

A few years back it was realized that at finite temperatures
a ‘Luttinger liquid system’ can take on qualitatively new
behaviors in transport (Matveev 2004a) and the single-particle
Green’s function (Cheianov and Zvonarev 2004a). Some of the

0953-8984/09/193201+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/19/193201
mailto:fiete@physics.utexas.edu
http://stacks.iop.org/JPhysCM/21/193201


J. Phys.: Condens. Matter 21 (2009) 193201 Topical Review

Figure 1. Schematic behavior of photon absorption intensity, equation (1), for an infinite mass core hole in three dimensions. The exponent α
given by equation (2) contains positive contributions from excitonic effects and negative contributions from Anderson’s orthogonality
catastrophe. It is possible for α to be either positive (a) or negative (b). In the spin-incoherent regime of one-dimensional systems the
absorption is not generally given by equation (1) but instead exhibits logarithmic corrections and additional physics enters the exponent α.

results for the single-particle Green’s function were anticipated
in an earlier work (Berkovich 1991), but the many novel
features that can arise due to finite temperatures were not
fully appreciated until the more recent works mentioned above
which really started proper the study of the spin-incoherent
Luttinger liquid (Fiete 2007).

The spin-incoherent regime of a one-dimensional interact-
ing electron gas is defined in the following way. Let us as-
sume that at zero temperature our system is spin–charge sep-
arated with spin velocity vs and charge velocity vc such that
vs � vc. If the interactions are strong (regardless of the range
of interactions) it can be shown that vs can be exponentially
small compared to vc (Häusler 1996, Matveev 2004b, Fogler
and Pivovarov 2005). Defining a characteristic spin energy
Es = h̄vs/a and a characteristic charge energy Ec = h̄vc/a
for mean particle spacing a, it is evidently clear that the spin
energy can be exponentially suppressed relative to the charge
energy: Es � Ec. An exponentially separated spin and charge
energy makes it possible for the thermal energy to lie in the
range Es � kBT � Ec, where kB is Boltzmann’s constant
and T is the temperature. A one-dimensional electron system
in the energy window Es � kBT � Ec is said to be in the
spin-incoherent regime. If the charge sector is gapless it will
be described by a zero-temperature Luttinger liquid theory and
the resulting system is called a spin-incoherent Luttinger liquid
(SILL). Note that, if Es refers to a spin gap, then an SILL is
still realized when Es � kBT � Ec, provided the charge sec-
tor remains gapless. For a general discussion of the SILL see
(Fiete 2007). For SILL physics in ferromagnetic and supercon-
ducting hybrid structures see (Tilahun and Fiete 2008, 2009),
and in cold atomic gases see (Kakashvili et al 2008).

2. Familiar singular responses to a local
time-dependent potential

In this review we will only discuss a particularly simple
form of a time-dependent spatially local potential whereby its
value is changed instantaneously from zero to non-zero. The
prototypical physical realization of this situation is when a
photon in the x-ray energy range ejects a deep ‘core’ electron
from a metal—instantly changing the local charge by +e.
The electrons of the metal then rush in to screen the positive

potential and thereby change their states. If the electrons
interact strongly with each other the processes of the electrons
‘rushing in’ to screen the local potential will obviously be
impacted. According to Luttinger liquid theory, interactions
qualitatively change the nature of the low energy physics in
such a way that electron-like quasi-particles are absent from
the theory (Voit 1995), leaving only the collective bosonic
excitations. On this basis alone, we expect the response of
one-dimensional systems to differ in some ways from their
higher-dimensional counterparts. In fact, this expectation is
correct but to fully appreciate the differences, it is important to
review some of basic ideas and qualitative expectations for the
singular responses of non-interacting electron systems.

2.1. Singular response of a non-interacting Fermi sea

The seminal theoretical ideas of the singular response of a
non-interacting electron gas due to a localized core hole were
worked out by (Mahan 1967) and (Nozières and de Dominicis
1969). A nice textbook-level discussion can be found in
(Mahan 1981) and a more recent review in (Ohtaka and Tanabe
1990). The most important results to emerge are: (i) there is a
threshold frequency ωth above which there is photon absorption
and below which there is not. (ii) The photon absorption at
frequencies just above ωth follows a power law with exponent
α. The photon absorption intensity is computed from a Fermi
golden-rule-type treatment in the electron–photon coupling
and from the results just cited above takes the form

I (ω) = A0

(
ωth

ω − ωth

)α
�(ω − ωth), (1)

near threshold where A0 is a constant, and�(x) = 0 for x < 0
while �(x) = 1 for x > 0. A schematic of the possible
behaviors is shown in figure 1. The important microscopic
details of the electron dynamics and the electron–core hole
interaction are encoded in the exponent α and the power law
form itself. The power law arises from summing an infinite
series of diagrams containing logarithmic divergences (Mahan
1967). As we will see, in the SILL the power law form is
not sacred. It will be modified by logarithmic corrections,
and the physics encoded in α will depend on whether or not
the one-dimensional system is in the spin-incoherent regime.
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For a non-interacting electron gas the exponent takes the form
(Nozières and de Dominicis 1969)

α = 2δ0(kF)

π
− 2

∑
l

(2l + 1)

[
δl(kF)

π

]2

, (2)

where δl(kF) is the phase shift induced by the core hole in
the lth channel of the conduction electrons. Often s-wave
scattering (l = 0) is the dominant channel and we will assume
this is the case throughout this review. As the total amount
of screening charge around the core hole must be one unit of
charge, there is a Friedel sum rule:

1 = 2

π

∑
l

(2l + 1)δl(kF). (3)

If the scattering is not too strong, the phase shifts δl(kF) can
be computed in the Born approximation and one finds (Mahan
1981) δ0(kF)/π = N(EF)V0, where N(EF) is the density
of states at the Fermi energy and V0 > 0 is the strength of
the electron–hole interaction assumed momentum- and energy-
independent. (The actual core hole–electron interaction is −V0

and therefore attractive.) Within the Born approximation and
assuming only s-wave scattering, the exponent becomes

α ≈ 2N(EF)V0 − 2[N(EF)V0]2. (4)

Evidently, equations (2) and (4) imply there are competing
effects in α. The first term proportional to δ0(kF) is positive
while the second term proportional to [δ0(kF)]2 is negative.
Going back to equation (1) one sees that a positive contribution
to α tends to make the threshold response more singular,
while a negative contribution to α tends to make the threshold
response less singular. In fact, the origin of these two
contributions is very well understood. The first contribution
to α in equation (2) comes from excitonic effects arising from
the attractive interaction between the electrons and the core
hole. The second contribution to α in equation (2) arises
from Anderson’s orthogonality catastrophe (Anderson 1967)
and it tends to suppress the absorption by the small (vanishing
as ω → 0) overlap between initial and final states. Note
that for a non-interacting Fermi sea both excitonic effects and
orthogonality effects disappear if V0 = 0 and the absorption
threshold becomes a simple step. Looking ahead for a moment
to Luttinger liquid physics, it is instructive to point out that, if a
collection of fermions is interacting, there will be orthogonality
effects if an additional fermion of like charge is added to the
system because the other fermions must adjust their state to
accommodate the newcomer, but no excitonic effects. This
rearrangement of electronic states is what is responsible for
the famous power law suppression of the tunneling density of
states in a Luttinger liquid (Giamarchi 2004, Gogolin et al
1998). Finally, it is worth emphasizing that, depending on
the microscopic details involved, it is possible for α to be
positive or negative as shown in figure 1. If the mass of the
core hole is finite and one considers only direct transitions like
those in figure 2 one finds that the threshold is smeared out
and disappears (Müller-Hartmann et al 1971, Ruckenstein and
Schmitt-Rink 1987). We will find this is not the case when we
go to one dimension.

Figure 2. Schematic of the possible direct transitions for exciting a
hole with (a) finite mass and (b) infinite mass. Here EF denotes the
Fermi energy. In (a) an electron is excited from a valence band up to
a conduction band, leaving behind a single mobile hole in the valence
band. In (b) an electron is excited from an infinite mass core level.
The photo-absorption of both process (a) and (b) differ in one
dimension compared to their counterparts in three dimensions.
Furthermore, the response in one dimension depends on whether the
system is in the Luttinger liquid or spin-incoherent Luttinger liquid
regime.

2.2. Singular response of a Luttinger liquid

Before we turn our attention to the spin-incoherent Luttinger
liquid, it is useful for orientation to discuss the singular
response of its closest cousin, the Luttinger liquid. The
behavior exhibited by the one-dimensional Luttinger liquid
(LL) will already take us part of the way to understanding
the response of the SILL. In all of the results quoted below
finite system size effects will not become important until
frequencies smaller than vF/L are probed, where L is the
length of the system and vF is the Fermi velocity. Also, finite
temperature will cut off the singular behaviors when relevant
frequencies are of order kBT and smaller. In this sense, finite
system size and temperature can act as a non-zero threshold
for tunneling into a finite length system or an infinite system at
finite temperature, for example.

2.2.1. Tunneling into a Luttinger liquid. Let us first
consider the simplest kind of singular response: abruptly
adding a particle to an LL as occurs during tunneling. A nice
pedagogical discussion of the essential physics of tunneling
into an LL is given by (Fisher and Glazman 1997). Here we
adopt the central elements of their discussion. The tunneling
process is conveniently visualized within a Wigner crystal
type picture for spinless electrons, as shown in figure 3.
Such a picture implies very strong electron interactions, but
the physical result and the final mathematical expression that
describes it are actually valid at any interaction strength. We
imagine a process where an electron tunnels from the left of the
barrier at x = 0 to the right of the barrier at time t = 0. The
rate at which the electron tunnels is determined by the Debye
frequency of the Wigner crystal, ωD = kFv, where kF is the
Fermi wavevector and v is the phonon (charge) velocity. When
an electron tunnels, the potential near the barrier suddenly (on
a timescale ∼1/ωD) changes. The energy cost of this new
configuration is large, ∼ωD/g, where g � 1 is the interaction
parameter for the spinless Luttinger liquid. (Here g = 1 if
the electrons are non-interacting.) This large energy cost is
reduced by the relatively slow process of the electrons relaxing
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Figure 3. Schematic of the tunneling process of spinless electrons
into a ‘Wigner crystal’ type electron arrangement. Electrons are
schematically represented by black dots evenly spaced on either side
of the tunneling barrier of strength U0 at x = 0. The tunneling occurs
in two steps: a fast process where the electron enters the region
x > 0 from the left followed by a slow process of charge relaxation
where each electron shifts over to the right by a distance of one
lattice constant. At long times 〈ψ(τ)ψ†(0)〉 ∼ ( 1

ωDτ
)1/g as discussed

in the text. The resulting behavior of the tunneling density of states is
A(ω) ∼ ω1/g−1. The qualitative behavior of the tunneling density of
states looks very much like that in figure 1(b) with ωth = 0.

to new equilibrium positions in order to minimize the energy.
Once the relaxation process is complete, all the electrons
will be shifted to the right by one crystalline period. In the
thermodynamic limit this new wavefunction is orthogonal to
the original one which implies at zero energy (ω = 0) there
is no tunneling. This is a concrete example of Anderson’s
orthogonality catastrophe that we earlier mentioned plays a
role in the exponent α of the threshold behavior of photon
absorption. For finite energy the final state may be in an excited
state so the relaxation is not complete and the initial and final
wavefunction can have finite overlap. We will now see how
this directly leads to a power law tunneling density of states,
one of the ‘singular’ responses of interest in this review.

We can compute the tunneling density of states from
the single-particle Green’s function (Mahan 1981). In the
semiclassical approximation the electron tunneling takes the
path of minimal action which is given by the classical trajectory

〈ψ(x, t)ψ†(x, 0)〉 ∼ exp[−S(t)], (5)

where ψ(x, t) is the electron annihilation operator at position
x and time t , and ψ†(x, t) is the creation operator. The initial
density deformation ρ(x, t = 0) = 2δ(x) will eventually relax
to ρ(x, t = ∞) = 0. As the process is classically forbidden,
the trajectory runs in imaginary time t = iτ . The classical
equation of motions for a harmonic lattice give

ρ(x, τ ) = 2

π

vτ

x2 + (vτ )2
, x > 0. (6)

The potential energy of the deformation is

Vdef(τ ) = v

g

π

2

∫ ∞

0
dx ρ(x, τ )2 = 2v

πg

∫ ∞

0
dx

(vτ )2

[x2 + (vτ )2]2
,

(7)
which gives Vdef(τ ) = 1/(2gτ ). By the virial theorem, the
kinetic energy is equal to the potential energy. Therefore the
action describing the slow part of the tunneling is

S(τ ) = 2
∫ τ

ω−1
D

dτ ′ Vdef(τ
′) = 1

g
ln(ωDτ ), (8)

whence 〈ψ(x, t)ψ†(x, 0)〉 ∼ 1/(ωDτ )
1/g . Taking the Fourier

transform one finds the tunneling density of states A(ω) ∼
ω1/g−1. Since we have assumed g < 1, the tunneling density
of states → 0 as ω → 0, as we noted above in the context of
the orthogonality catastrophe.

The discussion above illustrates some of the most central
aspects of singular responses of interacting one-dimensional
systems. However, there is much more to the story. Let us
now suppose that, instead of an electron tunneling, we consider
an incident photon that abruptly creates a particle–hole pair
as shown in figure 2. Note that, due to the presence of the
gap between the hole states and conduction band, there will be
a minimum frequency ωth required to create the particle–hole
pair. If we first focus on the electrons in the conduction band,
we see that the process is similar to tunneling: conduction
band electrons see the sudden appearance of a new electron
and they must adjust their positions by relaxing to a new state
just as if the electron tunneled from outside the system. As
we have seen, this relaxation rate is related to the strength of
the electron interactions g in the Luttinger liquid and, based
on the power law density of states we obtained, we expect
the threshold behavior will also contain at least a power law
contribution with an exponent that contains information about
the interactions in the system.

It is also important to consider the interaction between
the hole created and the electrons in the conduction band. As
holes and electrons generally have different masses and they
attract rather than repel each other, the creation of a hole adds
new physics to the electron tunneling physics above. In fact,
to compute the photon absorption spectrum near threshold we
must simultaneously account for the interaction of the electrons
with each other and with the hole. In general, this is a very
difficult problem. Fortunately, though, the power of Luttinger
liquid theory and the commonly used technical methods such
as bosonization allow us to make some precise and quite
general statements about I (ω).

2.2.2. Fermi-edge singularity in a Luttinger liquid.
Pioneering theoretical work in the study of the Fermi-edge
singularity in Luttinger liquids was carried out more than
15 years ago (Ogawa et al 1992, Lee and Chen 1992), and
later works soon followed (Kane et al 1994, Affleck and
Ludwig 1994, Otani and Ogawa 1996a, 1996b, Furusaki
1997, Kominik et al 1997, Tsukamoto et al 1998a, 1998b,
Balents 2000). A recent review of the optical response
of low-dimensional systems (including some aspects of one
dimension) exists (Ogawa 2004), so here we will only highlight
the main issues and results to set the stage for our discussion
of the spin-incoherent one-dimensional systems.

In one-dimensional electronic systems the effect of im-
purities is especially dramatic compared to three dimensions.
Even for an unrealistic non-interacting one-dimensional sys-
tem the electrons localize, leading to insulating behavior. How-
ever, for a realistic system which contains repulsive interac-
tions even a single local potential of arbitrary strength will lo-
calize the electrons to the half-line (Kane and Fisher 1992, Fu-
rusaki and Nagaosa 1993). The central physics of this result
is the relevance of electron backscattering as a perturbation: at
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low energies the strength of the impurity grows to arbitrarily
large values and eventually divides the system into two semi-
infinite segments. This physics is important for the Fermi-edge
singularity involving an infinitely massive core hole, i.e. one
that is localized in space.

On the other hand, when the mass of the core hole is
finite the physics is very different. The properties of a heavy
particle (holes are typically heavier than electrons) moving in a
Luttinger liquid have been investigated (Castro Neto and Fisher
1996). It was shown that the mobility of the heavy particle
diverges at low energies, implying that electron backscattering
from it becomes irrelevant. We therefore see that the Fermi-
edge singularity in a Luttinger liquid falls into two categories:
(i) infinite hole mass and (ii) finite hole mass. Note that in
three dimensions it was also important to divide the physics
into the same two categories, but the reason for that division
was different. In three dimensions finite hole mass led to
excitonic effects that smeared the edge singularity of the direct
transition and eliminated the threshold. This has to do with
a large (compared to one dimension) phase space for recoil
effects. A sharp threshold only exists for the infinitely massive
hole. On the other hand, in one dimension the issue is about
the relevance/irrelevance of backscattering and that is decided
by the interactions (repulsive or attractive) in the LL. Another
way to see that it is natural to divide the classes into infinite
and finite masses cases is that the symmetry is different. An
infinitely massive hole breaks the translational symmetry of the
problem, while a hole with finite mass does not.

One of the first issues addressed regarding the Fermi-edge
singularity in the LL is whether the threshold still exists for the
case of finite hole mass. This was answered in the affirmative
(Ogawa et al 1992). The next logical question is how does
the threshold exponent α depend on the electron–hole and
electron–electron interactions? Initially it was argued that α
was independent of the hole mass (Ogawa et al 1992), but this
was later challenged and corrected (Castella 1996, Tsukamoto
et al 1998a, 1998b). Knowing that any finite mass hole is an
irrelevant perturbation (Castro Neto and Fisher 1996) we can
immediately see that only forward scattering interactions will
contribute to α. Indeed this is found as well as a schematic
phase diagram for when α is positive or negative (Ogawa et al
1992). The result is (Tsukamoto et al 1998a)

αLL
mobile = 1 − 1

2

[
g(1 − δa)

2 + 1

g
(1 − δs)

2

]
, (9)

where δa is an asymmetric phase shift and δs a symmetric phase
shift defined below in the discussion of the spin-incoherent
case. The presence of δa implies that the exponent depends
on the mass of the hole. Note that both δa and δs correspond
to forward scattering processes and g < 1 is the Luttinger
parameter for repulsively interacting spinless electrons. We
can directly compare the result, equation (9), with the non-
interacting case, equation (2), by taking g = 1 and δa = 0
(appropriate for an infinitely massive hole). In doing so, we
note the form is identical to an s-wave-only scattering model.
From this comparison we also see that δs has the meaning of a
phase shift up to factors of 2 and π . Note that we are allowed
to compare the result for a mobile impurity in an LL with

an infinitely massive impurity in a free electron gas in three
dimensions because in the latter backscattering is not a relevant
perturbation. They are therefore in a similar ‘class’.

The situation is different when we turn to immobile
infinite mass holes. Here, as before, a threshold exists, but now
α is modified by the relevant backscattering and in fact obtains
a universal contribution of 1/8 (Kane et al 1994, Prokof’ev
1994, Affleck and Ludwig 1994, Furusaki 1997, Kominik et al
1997):

αLL
immobile = 1 − 1

g
(1 − δs)

2 − 1/8. (10)

In section 3 we will discuss how these two results are
modified in the spin-incoherent regime. But before we do
that, it is important to comment on the experimental situation.
Unfortunately, there are few published results (Calleja et al
1991, Fritze et al 1993, Calleja et al 1995, Ihara et al
2007) and the overall level of agreement between theory and
experiment is poor. Clearly there is a great need for further
experiments on Fermi-edge singularities on clean, single-mode
one-dimensional systems. We hope this review will help to
stimulate more.

3. Tunneling and edge singularities in a
spin-incoherent Luttinger liquid

We finally come to the main topic of this review well prepared
from the earlier discussions of singular responses of non-
interacting electron gases and Luttinger liquids. The question
to ask is: what are the similarities and differences between the
singular responses of an SILL and an LL or Fermi liquid? As
we will see, the behavior is qualitatively different from both the
LL and Fermi liquid, making it possible to distinguish them in
experiment. Perhaps the simplest and most striking difference
is the behavior of the tunneling density of states. We begin
there.

3.1. Tunneling into a spin-incoherent Luttinger liquid

The first theoretical study of tunneling into an SILL was
reported in the infinite U limit of the Hubbard model in
a lengthy Bethe ansatz calculation (Cheianov and Zvonarev
2004a, 2004b). Immediately afterward a simpler and more
general method based on bosonization and the imaginary
time path integral representation was given (Fiete and Balents
2004). Extensions of the method to finite length systems
including boundary effects and externally applied magnetic
fields have also been reported (Fiete et al 2005b, Kindermann
and Brouwer 2006, Kakashvili and Johannesson 2007, Fiete
2007). While the imaginary time path integral formulation
is well suited to the regime of the SILL, it does not provide
a conceptually straightforward generalization to the regime
kBT � Es � Ec. In order to address that regime, we need
a representation of the spin degrees of freedom that is valid
at arbitrary energy scales. Such a formulation is now in hand
(Matveev et al 2007a, 2007b) and it provides a good starting
point for numerical studies in the regime kBT � Es � Ec.
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3.1.1. Bosonization of strongly interacting electrons. As is
typical of interacting one-dimensional electron systems, we
assume the Hamiltonian in the strongly interacting case is
spin–charge-separated (Matveev 2004b, Fiete 2007): H =
Hc + Hs. Here, Hc is identical to that of the LL and is given by
(Giamarchi 2004, Gogolin et al 1998)

Hc = vc

∫
dx

2π

[
1

g
(∂xθ(x))

2 + g(∂xφ(x))
2

]
, (11)

where θ and φ are bosonic fields satisfying [θ(x), φ(x ′)] =
−iπ2 sgn(x − x ′) and g = 2gc is the effective Luttinger
interaction parameter of the electron gas (Fiete et al 2005a).

On the other hand, the spin Hamiltonian at arbitrary
temperatures is, to a very good approximation, given by
a nearest-neighbor antiferromagnetic Heisenberg spin chain
(Matveev 2004b, Klironomos et al 2005, Fogler and Pivovarov
2005):

Hs =
∑

l

J 
Sl · 
Sl+1, (12)

where evidently the spin energy is set by J : Es = J . The
basic idea is to represent the electron operator as a product of
operators that describe the holons(x) (spinless fermions that
naturally arise in the context of strongly interacting fermions
and the spin-incoherent regime (Fiete et al 2005a, Fiete and
Balents 2004)) and the spin degrees of freedom 
Sl . The
holon operators (denoted by†,) by construction satisfy the
equation

†(x)(x) = ψ
†
↑(x)ψ↑(x)+ ψ

†
↓(x)ψ↓(x), (13)

where ψs is the electron annihilation operator for electrons of
spin projection σ andψ†

σ is the corresponding electron creation
operator.

The issue of how to bosonize the electron operator for a
strongly interacting system earlier arose in the context of the
large U limit of the one-dimensional Hubbard model where
(Penc et al 1995) wrote the electron creation operator as

ψ†
σ (0) = Z †

0,σ
†(0), (14)

where Z †
0,σ creates a site on the spin chain equation (12) with

spin projection σ . The expression in equation (14) can be
physically motivated as follows. From equation (13) it is clear
that the creation of an electron is also accompanied by the
creation of a holon. However, electrons also carry spin so there
must be a component of the electron operator that also creates
spin. This is accomplished by Z †

0,σ . In general, one has Z †
l,σ as

the object that adds a new site to the spin chain between l − 1
and l. While this appears physically intuitive, the expression
suffers from the drawback that it does not naturally account for
the variation of electron density with position in a real electron
gas (Penc et al 1996). The remedy for this issue (Matveev et al
2007b) is to define the position at which the spin site is added
to the chain equation (12) in terms of the number of holons to
the left of the site:

l(x) =
∫ x

−∞
†(y)(y) dy. (15)

In terms of equation (15) the electron creation and annihilation
operators are defined as

ψ†
σ (x) = Z †

l(x),σ
†(x), (16)

ψσ (x) = (x)Zl(x),σ . (17)

The operators given above explicitly account for the fact that
the spins are attached to electrons and the formulae are valid
at all energy scales. It is perhaps worth noting that, even
though the Hamiltonian is spin–charge-separated, the electron
operators are not written as a product of a spin piece and a
charge piece because the ‘spin’ pieces Zl(x),σ also depend on
the electron density via equation (15).

In writing equations (16) and (17) no assumptions have
been made about the energy scale relative to the spin and
charge energies. We now restrict our considerations to energies
small compared to Ec, but arbitrary with respect to Es. In this
case, we are free to bosonize the holon sector. We have already
given the form of the charge Hamiltonian in equation (11). The
spinless fields θ and φ can be related to the holon density as
(Fiete and Balents 2004, Fiete et al 2005b)

†(x)(x) = 1

π
[kh

F + ∂xθ(x)], (18)

where the holon Fermi wavevector is twice the electron Fermi
wavevector (Fiete and Balents 2004) kh

F = 2kF and the bosonic
fields satisfy the commutation relations [θ(x), ∂yφ(y)] =
iπδ(x − y).

Since we are interested in low energies with respect to the
charge energy, the electron operator may be expanded about
the two-holon Fermi points at ±kh

F:

(x) = R(x)+L(x), (19)

where R(x) destroys a holon near the right Fermi point and
L(x) destroys an electron near the left Fermi point. The left
and right holon operators are bosonized as

R,L(x) = 1√
2παc

e−iφ(x)e±i[kh
F+θ(x)], (20)

where αc is a short-distance cutoff of the order of
the interparticle spacing a. Combining the results of
equations (15) and (17)–(20) one obtains the bosonized form
of the electron annihilation operator for spin σ :

ψσ (x) = e−iφ(x)

√
2παc

×
(

ei[kh
F x+θ(x)] + e−i[kh

F x+θ(x)]
)

Zl,σ

∣∣∣∣
l= 1

π
[kh

F x+θ(x)]
, (21)

and an analogous expression for the electron creation operator
ψ†
σ (x). The expression equation (21), however, is not quite

complete as it does not account for the discreteness of
the charge of the electron. This can be accomplished by
interpreting

Zl,σ |l= 1
π

[kh
F x+θ(x)] →

∑
l

Zl,σ δ

(
1

π
[kh

Fx + θ(x)] − l

)
, (22)
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after which the full electron annihilation operator (include both
left-and right-moving parts) becomes (Matveev et al 2007b)

ψσ (x) = e−iφ(x)

√
2παc

∫ ∞

−∞
dq

2π
zσ (q)e

i(1+ q
π
)[kh

F x+θ(x)], (23)

where

zσ (q) =
∞∑

l=−∞
Zl,σ e−iql . (24)

The expression for the electron annihilation operator,
equation (23), is the key result of (Matveev et al 2007b) who
also showed that, in the limit of small energies compared to
Es, the expression correctly recovers the standard LL formulae
for the electron annihilation operator. With equation (23)
correlation functions involving electron operators can be
expressed in terms of the correlation functions of the holon
and spin sectors at arbitrary temperatures with respect to Es,
but small energies compared to Ec.

3.1.2. Tunneling density of states in an SILL. The tunneling
density of states in an SILL is qualitatively different from the
LL. While the tunneling density of states in an LL qualitatively
resembles the behavior shown in figure 1(b) with ωth = 0,
the tunneling density of an SILL qualitatively resembles the
behavior in figure 1(a) with ωth = 0, at least for a range
of frequencies, kBT � h̄ω � Ec and for not too strong
interactions. For this reason, the tunneling density of states
may provide the simplest and most transparent test for SILL
physics in experiments.

Tunneling into an infinitely long SILL has been considered
by (Cheianov and Zvonarev 2004a, Fiete and Balents 2004,
Matveev et al 2007a). Deep in the spin-incoherent regime,
the first-quantized path integral representation of the bosonized
electron’s Green’s function is a convenient method (Fiete and
Balents 2004, Fiete et al 2005b, Fiete 2007). Here we instead
follow (Matveev et al 2007a, 2007b) as it provides a better
launching point for numerical studies in the regime kBT �
Es � Ec and also readily captures some other important
features of the tunneling density of states.

The tunneling density of states, ν(ω) = − 1
π

Im[GR(x =
0, ω)], where GR(x = 0, ω) is the Fourier transform
of the retarded Green’s function. The retarded Green’s
function generally contains particle and hole contributions,
but for illustrative purposes, we will only focus on the
particle contributions. Hole contributions are conceptually
and technical similar, and in the spin-incoherent regime it can
be shown that ν(ω) = 2ν(−ω) for h̄ω � kBT (Matveev
et al 2007a). Here we focus on the particle contribution:
G+
σ (x, t) = 〈ψσ (x, t)ψ†

σ (0, 0)〉. Using the general formulae
equations (23) and (24) we have

G+
σ (x, t) = 1

2παc

∫ ∞

−∞
dq1

2π

∫ ∞

−∞
dq2

2π

∑
l1,l2

e−i(q1l1−q2l2)

×〈Zl1,σ Z †
l2,σ

〉〈ei[(1+ q1
π
)[kh

F x+θ(x,t)]−φ(x,t)]

× e−i[(1+ q2
π
)θ(0,0)−φ(0,0)]〉, (25)

where we have assumed the time evolution of the spin degrees
of freedom are slow compared to the charge degrees of freedom

so that we can neglect their time dependence (Matveev
et al 2007b). In a translationally invariant system, one has
〈Zl1,σ Z †

l2,σ
〉 = 〈Zl1−l2,σ Z †

0,σ 〉. Making a change of variables
l = l1 − l2, the summation over the sites of the spin chain
results in a delta function, 2πδ(q1 − q2), which immediately
kills one of the momentum integrals and sets q1 = q2. The
resulting Green’s function is

G+
σ (x, t) = 1

2παc

∫ ∞

−∞
dq

2π
c+
σ (q)e

i(1+ q
π
)kh

F x g+
q (x, t), (26)

where

c+
σ (q) =

∞∑
l=−∞

〈Zl,σ Z †
0,σ 〉e−iql , (27)

and

g+
q (x, t) = 〈ei[(1+ q

π
)θ(x,t)−φ(x,t)]e−i[(1+ q

π
)θ(0,0)−φ(0,0)]〉. (28)

Since the holon sector is described by the Gaussian theory,
equation (11), we can make use of the identity 〈eiO〉 =
e−〈O2〉/2 for operator O and evaluate the correlation function
equation (28) at zero temperature with respect to the charge
energy. (Generalization to small but finite temperatures in the
charge sector is trivial (Giamarchi 2004, Gogolin et al 1998).)
The expression for the hole-like contributions to the Green’s
function has the same structure as equation (26) and is reported
in (Matveev et al 2007b). Since for low temperatures compared
to the charge energy the holon correlations in equation (28)
can be analytically evaluated in a straightforward way, the
emphasis for arbitrary temperatures with respect to the spin
energy is on the spin correlations described by equation (27).
For arbitrary temperatures the evaluation of c+

σ (q) is non-trivial
(Matveev et al 2007b) and it is precisely at this point that
numerical input for both zero and non-zero magnetic fields
would be most helpful. Keeping for the moment temperature
arbitrary with respect to Es, but effectively zero compared to
Ec, one finds for the tunneling density of states (Matveev et al
2007a)

ν(ω) = ν0

∫
dq

2π

c+
σ (q)

�(λ(q)+ 1)

(
h̄ω

Ec

)λ(q)
, (29)

where ν0 = (π h̄vc)
−1, λ(q) = 1

2 [g(1 + q
π
)2 + 1

g ] − 1
and g = 2gc is the Luttinger interaction parameter appearing
in equation (11). From the exponent λ(q) one sees that
the frequency dependence ∼( h̄ω

Ec
)1/(2g)−1e− ln(Ec/h̄ω)(1+q/π)2/2

which is maximum for q = −π . Expanding about this point
and doing the Gaussian integration, one finds

ν(ω) ≈ ν0
c+
σ (−π)

2π�(λ(−π)+ 1)

(
h̄ω

Ec

)1/(2g)−1
√

2π

g ln(Ec/h̄ω)
,

(30)
which agrees with the result obtained earlier for the infinite U
limit of the Hubbard model (Cheianov and Zvonarev 2004a)
and for the general interaction parameter g in the spin-
incoherent regime (Fiete and Balents 2004). Note, however,
that the result equation (30) is valid at T = 0. The only
assumptions were that the dominant weight comes from the

7
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point q = −π and that c+
σ (−π) �= 0. If one is deep in

the spin-incoherent regime 〈Zl,σ Z †
0,σ 〉 = ( 1

2 )
|l| independent

of the details and form of Hs (a simple argument for this
is given in (Fiete and Balents 2004, Fiete 2007)) and one
has c+

σ (q) = 3
5−4 cos(q) . Hence, the assumptions leading to

equation (30) are valid and the result indeed applies in the
spin-incoherent regime as well. On the other hand, if the
spins are fully polarized (along the z axis, say) then c+

↑ (q) =
2πδ(q) and the tunneling density of states will necessarily
have a different form (in fact, the familiar LL form) from
equation (30) (Matveev et al 2007a). Also at T = 0 and
zero magnetic field one has c+

σ (−π) = 0 so the logarithmic
factor appearing in equation (30) is absent and the LL form is
obtained.

Finally, note that in the spin-incoherent regime where
equation (30) applies, the tunneling response of an SILL looks
qualitatively like the behavior in figure 1(a) with ωth = 0
for g = 2gc > 1/2, but it does not follow the analytical
form of equation (1) because of the logarithmic corrections. If
the interactions are both strong and long-ranged, it is possible
to obtain gc < 1/4, in which case the tunneling density of
states would look qualitatively like the behavior in figure 1(b)
with ωth = 0 although it would still not fit the analytic form
in equation (1). (Recall that for zero-range interactions the
smallest value gc can take is 1/2, obtained in the infinite-U
limit of the Hubbard model (Giamarchi 2004).) In this sense,
the tunneling response of the SILL is in a different universality
class from both the Fermi liquid and Luttinger liquid. We will
now see that the same logarithmic corrections can also appear
in the frequency dependence of the photon absorption.

3.2. Fermi-edge singularity in a spin-incoherent Luttinger
liquid

As we discussed earlier, the physics of the Fermi-edge
singularity falls into two classes: (1) electron backscattering
from the hole is an irrelevant perturbation and (2) electron
backscattering from the hole is a relevant perturbation. For
a Luttinger liquid these two regimes are distinguished by
whether the hole has a finite mass, case (1), or an infinite
mass, case (2). In the SILL there is a subtlety because the
relevance or irrelevance of backscattering from a local potential
(for example, an infinite mass core hole) depends on the
interactions in the system through the Luttinger parameter g.
In particular, a local impurity is only a relevant perturbation if
gc < 1/2 (which is the same as g < 1) (Fiete et al 2005a).
If 1/2 < gc < 1 the interactions of LL are repulsive, but
a local impurity is an irrelevant perturbation. Therefore, in
the SILL we effectively have three possible regimes for the
Fermi-edge singularity: (i) finite mass mobile hole for which
backscattering is irrelevant, (ii) infinite mass core hole for
which backscattering is irrelevant and (iii) infinite mass core
hole for which backscattering is relevant.

Let us first consider the case of a finite mass hole. In this
case the backscattering is always an irrelevant perturbation.
For addressing the threshold behavior of the photon absorption
we can therefore neglect backscattering terms and focus only
on forward scattering interactions between the electron and

the hole. In the initial study of the Fermi-edge singularity
in an LL (Ogawa et al 1992) it was incorrectly concluded
that the exponent α is independent of the dynamics of the
hole, i.e. its mass. A more careful treatment showed that
indeed the mass of the hole enters α (Tsukamoto et al 1998a,
1998b). The work of Tsukamoto et al employed a combined
Bethe ansatz Conformal Field Theory study of a zero-range
interaction between particles. The asymptotic structure of the
energy and critical exponents in this model could be obtained
exactly. From the formulae obtained it was shown explicitly
that the exponent α depends on the mass of the hole. Perhaps
the most important result is the structure of the electron–hole
interaction: there are actually two forward scattering terms
that emerge. One is the familiar density–density interaction
between hole density and electron density. The other is less
familiar and it describes the interaction of the hole with a
current of electrons that is flowing by it. In other words, it is
natural to transform to a frame co-moving with the hole (Castro
Neto and Fisher 1996). In this frame the hole sees a current of
electrons. One might think that such a picture would break
time-reversal symmetry, but in an actual experiment electrons
would be excited near both the right and left Fermi points
shown in figure 2(a). Thus, as a whole, time-reversal symmetry
is preserved. As the contribution to the absorption edge is the
same in both cases, one need only focus on one Fermi point.
Our discussion below will cover both Fermi points in one fell
swoop, as the electron operator equation (23) contains both
right-and left-moving pieces.

The Fermi-edge singularity in a spin-incoherent Luttinger
liquid was discussed by (Fiete 2006). The full Hamiltonian
for our problem in the frame co-moving with the hole is H =
Helec+Helec−hole+Hhole, where Helec is given by equations (11)
and (12), and

Helec−hole = U f
s

π
h†h∂xθ(0)± U f

a

π
h†h∂xφ(0), (31)

with Hhole = ∑
σ Eh,σh†

σhσ and h†h = ∑
σ h†

σhσ . Here
U f

s is the symmetric part of the forward scattering from the
hole and U f

a is the antisymmetric part of the forward scattering
(Tsukamoto et al 1998a). (In our convention ∂xθ represents
the density fluctuations and ∂xφ the particle current.) Again,
the antisymmetric part appears since, in the frame of the hole,
it sees a net current of particles scattering from it. The ‘+’ sign
is for a right-moving hole and the ‘−’ sign is for a left-moving
hole. The parameter U f

a depends on the momentum and mass
of the hole, and when it is at rest, U f

a ≡ 0 (Tsukamoto et al
1998a). The operator h†

σ creates a hole with spin σ and hσ
annihilates a hole with spin σ . The energy of such a hole in
its rest frame is Eh,σ , which in the presence of an externally
applied magnetic field can depend on σ .

To compute the photon absorption we treat the electron–
photon interaction in second-order perturbation theory.
Standard manipulations show (Mahan 1981)

I (ω) ∝
∑
σ

Re
∫ ∞

0
dt eiωt 〈ψσ (t)hσ (t)h†

σ (0)ψ
†
σ (0)〉. (32)

To evaluate the correlations appearing in equation (32) we
must diagonalize the Hamiltonian. The Hamiltonian H can
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be diagonalized with the unitary transformation

U = exp{−i[δaθ(0)+ δsφ(0)]h†h} (33)

where
δa ≡ ∓U f

a/(vgπ), (34)

and
δs ≡ −gU f

s/(vπ). (35)

Applying this transformation we find H̄ ≡ U † HU = Helec +
H̄hole, where the only change to Hhole is a shift in the hole
energy Eh,σ → Ẽh,σ , which is unimportant to us here. Our
main concern is with computing the threshold exponent α and
the functional form of the response.

We begin with the evaluation of the correlation function
Cσ (τ ) = 〈ψσ (τ)hσ (τ )h†

σ (0)ψ
†
σ (0)〉, where τ is the imaginary

time. At finite temperature

Cσ (τ ) = 1

Z
Tr

[
e−βHψσ (τ)hσ (τ )h

†
σ (0)ψ

†
σ (0)

]
(36)

= 1

Z
Tr[e−β H̄ ψ̄σ (τ )h̄σ (τ )h̄

†
σ (0)ψ̄

†
σ (0)], (37)

where in the second line we have introduced the unitary
transformation U †U = 1 and used the cyclic property of
the trace. We have already determined H̄ , so it remains
to determine ψ̄σ and h̄σ . Direct evaluation gives ψ̄σ =
ψσ (up to unimportant multiplicative factors) and h̄σ =
hσ e−i[δaθ+δsφ]. Therefore, the correlation function Cσ (τ )

separates as Cσ (τ ) = Cψ,σ (τ )Ch,σ (τ ). One readily finds

Ch,σ (τ ) = e−Ẽh,σ τ at zero temperature. This factor will
enter the threshold frequency ωth in equation (32) and will in
general also depend on the external magnetic field. Our main
interest here is in the evaluation of the part of the correlation
function that will give us the frequency dependence just above
threshold:

Cψ,σ (τ ) = 1

Zelec
Tr[e−βHelecψσ (τ)e

−i[δaθ(τ)+δsφ(τ)]

× ei[δaθ(0)+δsφ(0)]ψ†
σ (0)], (38)

where Zelec = Tr[e−βHelec ]. Formally, equation (38) bears
a striking resemblance to the single-particle Green’s function
evaluated in the spin-incoherent regime above. It is worth
pausing a moment to understand the physics of equation (38).
Recalling that the operator eiφ(x,τ ) creates a particle at
spacetime point (x, τ ) in the many-body system and the
electron number is related to the θ field via N(x, τ ) = n̄x +
1
π
(θ(x, τ ) − θ(0, 0)), with n̄ the average particle density, we

see immediately that Cψ,σ (τ ) involves adding an electron plus
an additional ‘background excitation’ (from eiδsφ(0)) and then
removing the same particle and its additional background at a
time τ later. The factors e±iδaθ contribute additional density
fluctuations coming from the motion of the finite mass valence
hole. This factor is absent in the infinite mass limit.

It remains to evaluate the trace in equation (38). We again
follow the more general bosonization scheme for strongly
interacting systems described above which reduces to the
previously obtained results deep in the spin-incoherent regime
(Fiete 2006). We have

Cψ,σ (τ ) = 1

2παc

∫ ∞

−∞
dq

2π
c+
σ (q) f +

q (τ ), (39)

where

f +
q (τ ) = 〈ei[(1+ q

π
−δa)θ(τ )−(1−δs)φ(τ)]e−i[(1+ q

π
−δa)θ(0)−(1−δs)φ(0)]〉.

(40)
In the zero-temperature limit with respect to the charge degrees
of freedom, we can evaluate equation (40) using equation (11)
as we did for the single-particle Green’s function. The result is

f +
q (τ ) =

(
αc

vcτ + αc

) 1
2 [g(1+ q

π
−δa)

2+ 1
g (1−δs)

2]
. (41)

The frequency dependence of I (ω) can now be computed
from equation (32) using Cσ (τ ) = Cψ,σ (τ )Ch,σ (τ ). The
computation is essentially identical to that of the tunneling
density of states, equation (29), only ω → ω̃ = ω − ωth and
λ(q) → λ̃(q) = 1

2 [g(1+ q
π

−δa)
2 + 1

g (1−δs)
2]−1. Therefore,

we have

I (ω) ∝
∑
σ

∫
dq

2π

c+
σ (q)

�(λ̃(q)+ 1)

(
h̄ω̃

Ec

)λ̃(q)
�(ω̃), (42)

where the �(ω̃ = ω − ωth) factor tells us there is no
photon absorption below a threshold frequency ωth. From
figure 2(a) it is clear that h̄ωth is of order the bandgap plus
the Fermi energy of the electrons plus the absolute value of
the energy of the hole near the Fermi points of the electron
gas. As with the expression equation (29) for the tunneling
density of states, equation (42) is the general expression for the
photon absorption in an interacting one-dimensional system.
For temperatures low compared to the charge energy, but
arbitrary with respect to the spin energy, the heavy lifting
is in the evaluation of c+

σ (q), as we emphasized in the
discussion of the single-particle Green’s function. Following
the same arguments we used there, we see that the frequency

dependence ∼( h̄ω̃
Ec
)

1
2g (1−δs)

2−1e− g
2 ln[ Ec

h̄ω̃ ](1+q/π−δa)
2
, which is a

maximum for q = π(δa − 1). Expanding about this point and
doing the Gaussian integration, one finds

I (ω) ∝
∑
σ

c+
σ (π(δa − 1))

2π�(λ̃(π(δa − 1))+ 1)

(
h̄ω̃

Ec

) 1
2g (1−δs)

2−1

×
√

2π

g ln( Ec
h̄ω̃ )

�(ω̃). (43)

Note that the final form of the photon absorption equation (43)
is almost identical to that of the tunneling density of states,
equation (30), aside from the factor δs that appears in the
threshold exponent.

It is instructive to compare the similarities and differences
of the Fermi-edge singularity with a mobile hole in the LL and
SILL. Comparing with the general formula equation (1) we see
that the threshold behavior is different in the SILL compared
to the LL and even the Fermi liquid. The threshold behavior
of the SILL contains the same logarithmic corrections that we
found earlier in the tunneling density of states. Focusing on the
power law part of the threshold behavior we see that

αSILL
mobile = 1 − 1

2g
(1 − δs)

2, (44)
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so that it is independent of δa, unlike the LL case in
equation (9). Since the asymmetric phase shift does not appear,
this implies the threshold exponent is independent of the hole
dynamics and therefore the mass of the hole in the spin-
incoherent case. Of course, from equation (43) it is clear that
the effects of δa are still felt, but only as a prefactor to the
frequency dependence.

The effects of an externally applied magnetic field can
also be easily incorporated (Fiete 2006). For a quantum
wire the magnetic field does not affect the orbital part of
the wavefunction until the magnetic length is of the order
of the wire width. We therefore only discuss the coupling
of the magnetic field to the spin of the electron, i.e. a
Zeeman coupling. The magnetic field will influence the spin
correlations described by c+

σ (q). In the spin-incoherent regime
with zero field one has 〈Zl,σ Z †

0,σ 〉 = 2−|l|, independent of σ . In

a finite external field one instead has 〈Zl,σ Z †
0,σ 〉 = p|l|

σ , where
p↑ = (1+exp{−EZ/kBT })−1 = 1− p↓ and EZ is the Zeeman
energy (Fiete 2006, Kindermann and Brouwer 2006). While
the presence of the magnetic field may shift the threshold
energy, it will not affect the exponent equation (44) (Fiete
2006). The magnetic field also gives rise to a frequency
scale ω∗ = Ec

h̄ e−2EZ/(gkB T ) below which SILL behavior is
observed and above which behavior characteristic of a spinless
LL is observed (Fiete 2006, Kindermann and Brouwer 2006),
namely the form equation (1) with the exponent equation (9).

We next turn to the case of an infinitely massive impurity
for which backscattering is irrelevant. In this case the effective
electron–hole interaction is given by equation (31) only with
δa = 0 as this corresponds to the case of a stationary hole
with no backscattering. The photon absorption in this case is
thus given by equation (43) with δa = 0. While an infinite
mass hole breaks translational symmetry, the irrelevance of
backscattering effectively restores translational symmetry at
low energies and the threshold behavior maps onto the finite
mass case.

On the other hand, when backscattering is relevant the
situation is very different. At low energies the hole acts as
a boundary to a semi-infinite one-dimensional system (Kane
and Fisher 1992, Furusaki and Nagaosa 1993). In this case,
the SILL maps onto a spinless electron system (Fiete et al
2005a, Fiete 2007) which allows us to immediately exploit
(Fiete 2006) the results obtained for that system. In particular,
one obtains a universal contribution of 1/8 to the threshold
exponent (Kane et al 1994, Prokof’ev 1994, Affleck and
Ludwig 1994, Furusaki 1997, Kominik et al 1997):

αSILL
immobile,relevant = 1 − 1

g
(1 − δs)

2 − 1/8, (45)

and the frequency dependence follows equation (1) without
the logarithmic corrections. In fact, for the infinitely massive
hole with relevant backscattering the only signature of spin-
incoherent physics is hidden in the mapping g = 2gc (Fiete
et al 2005a).

4. Outstanding issues in the spin-incoherent
Luttinger liquid

While our theoretical understanding of the spin-incoherent
regime has advanced rapidly, the difficulty of obtaining the
regime Es � Ec has hampered experimental tests of the
theory. To date, our best experimental evidence comes from
momentum-resolved tunneling on cleaved-edge overgrowth
quantum wires (Steinberg et al 2006), transport in split-gate
devices (Hew et al 2008), and somewhat more speculatively in
transport measurements on gated single-wall carbon nanotubes
with low electron density (Deshpande and Bockrath 2008).
Given that the existing theory now encompasses hybrid
structures of SILLs with ferromagnets and superconductors
as well (Tilahun and Fiete 2008, 2009)), the number of
experimental groups poised to make contributions to this
exciting field is greatly enlarged. For a recent discussion
of numerous possible experiments that would provide strong
evidence for spin-incoherent Luttinger liquid behavior see
(Fiete 2007).

On the theoretical side, a number of open issues remain.
In particular, it is desirable to have a better understanding of
the behavior on temperature scales kBT ≈ Es, which is most
likely very relevant for many experiments that approach but do
not quite reach the spin-incoherent regime. Related to this is
the need for a better understanding of the crossover between
the Luttinger liquid and the spin-incoherent Luttinger liquid
regimes. Both of these issues will likely require a numerical
attack as there are no obvious analytical methods available to
address them. Finally there is the issue of spin–orbit coupling
that has so far received no attention. For very strong spin–orbit
coupling, is there novel behavior in the regime Es � kBT �
ESO, Ec? These issues await further study.
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